4.6 Article

A Dual-Band Spaceplate: Contracting the Volume of Quasi-Optical Systems

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMTT.2023.3328474

关键词

Dual-band; electromagnetic metamaterials; Fabry-Perot (FP) interferometers; wave propagation

向作者/读者索取更多资源

This paper presents a new design concept of dual-band spaceplate, which can simultaneously operate in two different frequency bands, enabling better utilization of spectral bandwidth. The design uses a multilayer stack of semitransparent mirrors separated by free-space voids to emulate the effect of free-space propagation, and the frequency separation can be adjusted to achieve different frequency bands.
A spaceplate approximates the angular response of free space with a much thinner nonlocal metamaterial. They have the potential to significantly shrink the volume of optical and quasi-optical systems, by allowing elements such as lenses to be moved closer together. However, spaceplates exhibit a tradeoff between their operational angular and spectral bandwidths. In this work, we present a new space-compression concept: a dual-band spaceplate capable of operating in two distinct frequency bands simultaneously. This allows the limited spectral bandwidth to be targeted to application-specific parts of the spectrum. Our design is composed of a multilayer stack of semitransparent mirrors separated by free-space voids. These layers act as a system of coupled Fabry-Perot (FP) cavities-the guided-mode resonances of which emulate the effect of free-space propagation. The stack is engineered to exhibit two resonant subbands, with the frequency separation a tunable parameter in the design. We numerically and experimentally demonstrate a dual-band spaceplate exhibiting space compression at two distinct frequency subbands centered about 21.4 and 23.7 GHz.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据