4.5 Article

Network-based analysis of genetic variants associated with hippocampal volume in Alzheimer's disease: a study of ADNI cohorts

期刊

BIODATA MINING
卷 9, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13040-016-0082-8

关键词

-

资金

  1. Sophomore Science Scholarship Program of Dartmouth College
  2. Gordon and Betty Moore Foundation's Data-Driven Discovery Initiative [GBMF4552]
  3. NIH [R01 LM010098, P20 GM103534, R01 LM011360, U01 AG024904, RC2 AG036535, R01 AG19771, P30 AG10133, UL1TR001108, DOD W81XWH-14-2-0151, NCAA 14132004]
  4. NSF [IIS-1117335]
  5. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  6. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  7. National Institute on Aging
  8. National Institute of Biomedical Imaging and Bioengineering
  9. Alzheimer's Association
  10. Alzheimer's Drug Discovery Foundation
  11. Araclon Biotech
  12. BioClinica, Inc.
  13. Biogen Idec Inc.
  14. Bristol-Myers Squibb Company
  15. Eisai Inc.
  16. Elan Pharmaceuticals, Inc.
  17. Eli Lilly and Company
  18. EuroImmun
  19. F. Hoffmann-La Roche Ltd
  20. Genentech, Inc.
  21. Fujirebio
  22. GE Healthcare
  23. IXICO Ltd.
  24. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  25. Johnson & Johnson Pharmaceutical Research & Development LLC.
  26. Medpace, Inc.
  27. Merck Co., Inc.
  28. Meso Scale Diagnostics, LLC.
  29. NeuroRx Research
  30. Neurotrack Technologies
  31. Novartis Pharmaceuticals Corporation
  32. Pfizer Inc.
  33. Piramal Imaging
  34. Servier
  35. Synarc Inc.
  36. Takeda Pharmaceutical Company
  37. Canadian Institutes of Health Research

向作者/读者索取更多资源

Background: Alzheimer's disease (AD) is a neurodegenerative disease that causes dementia. While molecular basis of AD is not fully understood, genetic factors are expected to participate in the development and progression of the disease. Our goal was to uncover novel genetic underpinnings of Alzheimer's disease with a bioinformatics approach that accounts for tissue specificity. Findings: We performed genome-wide association studies (GWAS) for hippocampal volume in two Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts. We used these GWAS in a subsequent tissue-specific network-wide association study (NetWAS), which applied nominally significant associations in the initial GWAS to identify disease relevant patterns in a functional network for the hippocampus. We compared prioritized gene lists from NetWAS and GWAS with literature curated AD-associated genes from the Online Mendelian Inheritance in Man (OMIM) database. In the ADNI-1 GWAS, where we also observed an enrichment of low p-values, NetWAS prioritized disease-gene associations in accordance with OMIM annotations. This was not observed in the ADNI-2 dataset. We provide source code to replicate these analyses as well as complete results under permissive licenses. Conclusions: We performed the first analysis of hippocampal volume using NetWAS, which uses machine learning algorithms applied to tissue-specific functional interaction network to prioritize GWAS results. Our findings support the idea that tissue-specific networks may provide helpful context for understanding the etiology of common human diseases and reveal challenges that network-based approaches encounter in some datasets. Our source code and intermediate results files can facilitate the development of methods to address these challenges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据