4.5 Article

Sulfate Aerosols from Non-Explosive Volcanoes: Chemical-Radiative Effects in the Troposphere and Lower Stratosphere

期刊

ATMOSPHERE
卷 7, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/atmos7070085

关键词

climate-chemistry-aerosol model; non-explosive volcanic eruptions; atmospheric sulfur budget; sulfate aerosols; aerosol chemical-radiative effects; upper tropospheric ice particles

资金

  1. New Zealand Deep South National Science Challenge

向作者/读者索取更多资源

SO2 and H2S are the two most important gas- phase sulfur species emitted by volcanoes, with a global amount from non-explosive emissions of the order 10 Tg-S/ yr. These gases are readily oxidized forming SO42- aerosols, which effectively scatter the incoming solar radiation and cool the surface. They also perturb atmospheric chemistry by enhancing the NOx to HNO3 heterogeneous conversion via hydrolysis on the aerosol surface of N2O5 and Br-Cl nitrates. This reduces formation of tropospheric O-3 and the OH to HO2 ratio, thus limiting the oxidation of CH4 and increasing its lifetime. In addition to this tropospheric chemistry perturbation, there is also an impact on the NOx heterogeneous chemistry in the lower stratosphere, due to vertical transport of volcanic SO2 up to the tropical tropopause layer. Furthermore, the stratospheric O-3 formation and loss, as well as the NOx budget, may be slightly affected by the additional amount of upward diffused solar radiation and consequent increase of photolysis rates. Two multi-decadal time-slice runs of a climate-chemistry-aerosol model have been designed for studying these chemical-radiative effects. A tropopause mean global net radiative flux change (RF) of -0.23 W.m(-2) is calculated (including direct and indirect aerosol effects) with a 14% increase of the global mean sulfate aerosol optical depth. A 5-15 ppt NOx decrease is found in the mid-troposphere subtropics and mid-latitudes and also from pole to pole in the lower stratosphere. The tropospheric NOx perturbation triggers a column O-3 decrease of 0.5-1.5 DU and a 1.1% increase of the CH4 lifetime. The surface cooling induced by solar radiation scattering by the volcanic aerosols induces a tropospheric stabilization with reduced updraft velocities that produce ice supersaturation conditions in the upper troposphere. A global mean 0.9% decrease of the cirrus ice optical depth is calculated with an indirect RF of -0.08 W.m(-2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据