4.7 Article

Edge-selective covalent passivation of black phosphorus nanosheets by fullerene C70 toward enhanced antimicrobial performance

期刊

CHEMICAL ENGINEERING JOURNAL
卷 477, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.146997

关键词

Black phosphorus; Fullerene; Covalent functionalization; Reactive oxygen species; Antibacterial activity

向作者/读者索取更多资源

In this study, black phosphorus nanosheets were covalently modified to enhance antibacterial activity and improve environmental stability, resulting in the development of a novel non-antibiotic nano-antibacterial agent with significantly improved antibacterial performance.
In the fight against bacterial infection, conventional antibiotic treatment encounters the formidable challenges of drug resistance and sluggish development. Non-metallic two-dimensional (2D) nanomaterials such as black phosphorus (BP) have emerged as promising non-antibiotic antimicrobial candidates due to its peculiar physiochemical properties, but face hurdles including low ambient stability and limited antibacterial activity, hindering its widespread utilization in disinfection. Herein, few-layer BP nanosheets (BPNSs) were covalently passivated by edge-selectively grafting fullerene C70 via a one-step solid-state mechanochemical route, and for the first time the covalently functionalized BPNSs is employed in disinfection. Fullerene edge-selective covalent passivation not only effectively overcomes the obstacles of poor ambient stability, but also substantially enhances the antibacterial activities of BPNSs. The BPNSs-C70 hybrid (denoted as BPNSs-C70) was applied as a novel non-metallic and non-antibiotic nano-antibacterial agent. Under 660 nm visible light irradiation, BPNSs-C70 demonstrates high generation capacity of reactive oxygen species (ROS), resulting in boosted in vitro and in vivo antibacterial efficacies against methicillin-resistant Staphylococcus aureus (MRSA) relative to the pristine BPNSs with exceptional biocompatibility. The significantly enhanced antibacterial performance of BPNSs-C70 is attributed to the synergistically improved singlet oxygen (1O2) and hydroxyl radicals (center dot OH) generation originated from the intramolecular electron transfer from BPNSs to C70.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据