4.7 Article

Study on waste tire pyrolysis product characteristics based on machine learning

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jece.2023.111314

关键词

Waste tire; Pyrolysis; Machine Learning; Yield prediction

向作者/读者索取更多资源

Tire pyrolysis is a complex thermochemical conversion process that transforms waste tires into valuable products. Data-driven machine learning models, such as Gaussian process regression (GPR) and random forest regression (RFR), optimized with Particle Swarm Optimization (PSO), demonstrate impressive prediction performance for pyrolysis product yields. These models provide a reliable and accurate method for predicting the yield of pyrolysis oil, char, and gas.
Tire pyrolysis is a highly complex thermochemical conversion process that transforms waste tires into high-value products such as pyrolysis oil, pyrolysis gas, and pyrolysis char. This process significantly mitigates the environmental issues caused by waste tires and reduces reliance on fossil resources. The physicochemical properties of tires and pyrolysis operation parameters have a significant impact on the yield of the three-phase products, thus affecting the industrial viability of tire pyrolysis to a large extent. Traditional prediction methods such as computational fluid dynamics and process simulation often fail to provide satisfactory results. However, data driven machine learning (ML) models have demonstrated their ability to handle complex nonlinear problems and offer more reliable predictions of pyrolysis products yield. This study employed a collected database of tire pyrolysis to develop tire pyrolysis product prediction models based on five ML models. These models were further optimized using Particle Swarm Optimization (PSO), and their prediction performances were quantitatively evaluated to identify the optimal model. Shapley analysis and one-way partial dependence analysis were conducted to explore the impact of input features on the output responses. Furthermore, an industrial-grade software was developed for accurate prediction of tire pyrolysis three-phase products yield. The results revealed that Gaussian process regression (GPR) and random forest regression (RFR), both optimized with PSO, demonstrated impressive prediction performance. Among them, the GPR model achieved the highest prediction accuracy with coefficient of determination (R2) values of 0.964, 0.924, and 0.86 for oil, char, and gas yields respectively, during the testing stage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据