4.7 Article

Lipid raft interacting galectin 8 regulates primary ciliogenesis

期刊

FASEB JOURNAL
卷 37, 期 12, 页码 -

出版社

WILEY
DOI: 10.1096/fj.202301943R

关键词

caveolin 1; galectin 8; ganglioside; lipid raft; primary cilia; transition zone

向作者/读者索取更多资源

The study shows that galectin 8 promotes the rapid elongation of primary cilia by binding to lipid raft components at the base of cilia and interfering with the interaction between caveolin 1 and TMEM231. The functional barrier of the transition zone is disrupted, resulting in the redistribution of cilia proteins and the elongation of primary cilia.
Primary cilium is a specialized sensory organelle that transmits environmental information into cells. Its length is tightly controlled by various mechanisms such as the frequency or the cargo size of the intraflagellar transport trains which deliver the building materials such as tubulin subunits essential for the growing cilia. Here, we show the sialoglycan interacting galectin 8 regulates the process of primary ciliogenesis. As the epithelia become polarized, there are more galectin 8 being apically secreted and these extracellular galectin 8 molecules apparently bind to a lipid raft enriched domain at the base of the primary cilia through interacting with lipid raft components, such as GD3 ganglioside and scaffold protein caveolin 1. Furthermore, the binding of galectin 8 at this critical region triggers rapid growth of primary cilia by perturbing the barrier function of the transition zone (TZ). Our study also demonstrates the functionality of this barrier depends on intact organization of lipid rafts at the cilia as genetically knockout of Cav1 and pharmacologically inhibition of lipid raft both phenocopy the effect of apical addition of recombinant galectin 8; that is, rapid elongation of primary cilia and redistribution of cilia proteins from TZ to the growing axoneme. Indeed, as cilia elongated, endogenous galectin 8, caveolin 1, and TZ component, TMEM231, also transited from the TZ to the growing axoneme. We also noted that the interaction between caveolin 1 and TMEM231 could be perturbed by exogenous galectin 8. Taken together, we proposed that galectin 8 promoted primary cilia elongation through impeding the barrier function of the TZ by interfering with the interaction between caveolin 1 and TMEM231.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据