3.8 Article

Chitosan/PVA-supported silver nanoparticles for azo dyes removal: fabrication, characterization, and assessment of antioxidant activity

期刊

ENVIRONMENTAL SCIENCE-ADVANCES
卷 -, 期 -, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3va00224a

关键词

-

向作者/读者索取更多资源

With the advancement of technology, nanotechnology has gained significant interest in recent years. This study focuses on the green synthesis of nanomaterials using basil extract and chitosan/PVA as support materials. The synthesized AgNPs@chitosan/PVA nanocomposite demonstrates potential as an antioxidant agent and photocatalyst, with high antioxidant activity against DPPH and H2O2, as well as remarkable photocatalytic activity against various dyes.
With the advancement of technology, studies in the field of nanotechnology have attracted great interest in recent years. The fact that nanomaterials have superior advantages over micromaterials provides a wide range of uses. Green synthesis is an effective way to prepare nanomaterials with an easy, fast, and environmentally friendly method. Within the scope of the study, AgNPs were synthesized using basil extract and combined with chitosan/PVA as a support material. By using chitosan/PVA support materials, the surface area of AgNPs was increased and it was aimed to improve their properties. The synthesized AgNPs@chitosan/PVA nanocomposite was characterized using various methods. In the UV-Vis spectrum, an absorbance peak was observed at 430 nm for the AgNPs@chitosan/PVA nanocomposite, and the particle size was determined as 25.10 nm according to TEM results. In addition, the photocatalytic and antioxidant activities of AgNPs@chitosan/PVA nanocomposite were investigated. The antioxidant activity of the AgNPs@chitosan/PVA (100 mu g mL-1) nanocomposite against DPPH and H2O2 was determined as 89.18% and 71.87%, respectively. The photocatalytic activity of the AgNPs@chitosan/PVA nanocomposite against methylene blue (MB), methylene red (MR), methylene orange (MO), safranin, and crystal violet (CV) dyes was 77%, 85%, 79%, 54%, and 9%, respectively. While the highest photocatalytic activity was observed against MR dye, very low photocatalytic activity was observed for CV. In light of the results obtained, it can be said that the AgNPs@chitosan/PVA nanocomposite has the potential to be used as an antioxidant agent and photocatalyst. The photocatalytic activity of AgNPs@chitosan/PVA nanocomposite was tested against different dyes such as methylene blue, methylene orange, and methylene red as an effective photocatalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据