4.7 Article

The impact of extreme precipitation on physical and biogeochemical processes regarding with nutrient dynamics in a semi-closed bay

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 906, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.167599

关键词

Heavy rainfall; Nutrients; Chlorophyll-a; Semi-closed bay; FVCOM-ERSEM

向作者/读者索取更多资源

This study used a physical-biological model to investigate the mechanisms behind the variations in dissolved inorganic nitrogen, phosphorus, silicon, and chlorophyll-a in Jiaozhou Bay. The results show that physical processes increase nutrients, while biological processes reduce them. Exchange with the Yellow Sea plays a significant role in nutrient dynamics.
An extreme precipitation event in August 2012 changed the ecosystem of Jiaozhou Bay (JZB), China. Biochemical variables in the sea, river mouths, and rainwater were monitored simultaneously during the event. The impact of the following excessive riverine input and wet atmospheric deposition on nutrient dynamics were studied before. However, regulatory processes of nutrient dynamics were not quantified and analyzed. Therefore, a coupled physical-biological model (FVCOM-ERSEM) was used to study the physical and biochemical mecha-nisms of the variation of the dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicon (DISi), as well as chlorophyll-a (Chl-a). The results indicate that physical processes increase nutrients, while biological processes reduce them. The exchange with the Yellow Sea, as an important physical process, exports DIN to the Yellow Sea, but imports DIP and DISi to the JZB. Only 20 % of the excessive DIN due to extreme precipitation event was reduced by water exchange with the Yellow Sea. The rest (80 %) was reduced and changed into organic nitrogen through biological processes. This paper also examines the variation of the pelagic and benthic cycles of biochemical processes. In these cycles, phytoplankton take up and use nutrients in the bay, while zooplankton excretion in the pelagic cycle and benthic releases resupply them. Precipitation enriched the surface nutrients, which boosted primary production and organic matter transport to the bottom water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据