4.7 Article

Rheological insights on Carboxymethyl cellulose hydrogels

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.127481

关键词

Hydrogels; Carboxymethyl cellulose; Rheology

向作者/读者索取更多资源

In this study, Carboxymethyl cellulose based hydrogels were prepared using a less expensive physical crosslinking approach. The mechanical strength of the hydrogels increased with an increase in the Carboxymethyl cellulose polymer concentration. The prepared hydrogels exhibited high thermal stability and retained their gel network structure even at 50 degrees C.
Hydrogels are copiously studied for tissue engineering, drug delivery, and bone regeneration owing to their water content, mechanical strength, and elastic behaviour. The preparation of stable and mechanically strengthened hydrogels without using toxic crosslinkers and expensive approaches is immensely challenging. In this study, we prepared Carboxymethyl cellulose based hydrogels with different polymer concentration via a less expensive physical crosslinking approach without using any toxic crosslinkers and evaluated their mechanical strength. In this hydrogel system, the carbopol concentration was fixed at 1 wt/v% and the Carboxymethyl cellulose concentration was varied between 1 and 5 wt/v%. In this hydrogel system, Carbopol serves as the crosslinker to bridge Carboxymethyl cellulose polymer through hydrogen bonds. Rheological analysis was employed in assessing the mechanical properties of the prepared hydrogel, in particular, the viscoelastic behaviour of the hydrogels. The viscoelastic nature and mechanical strength of the hydrogels increased with an increase in the Carboxymethyl cellulose polymer concentration. Further, our results suggested that gels with Carboxymethyl cellulose concentration between 3 wt/v % and 4 wt/v % with yield stresses of 58.83 Pa and 81.47 Pa, respectively, are potential candidates for use in transdermal drug delivery. The prepared hydrogels possessed high thermal stability and retained their gel network structure even at 50 degrees C. These findings are beneficial for biomedical applications in transdermal drug delivery and tissue engineering owing to the biocompatibility, stability, and mechanical strength of the prepared hydrogels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据