4.8 Article

Bimodal modulation of in vitro angiogenesis with photoactive polymer nanoparticles

期刊

NANOSCALE
卷 -, 期 -, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3nr02743k

关键词

-

向作者/读者索取更多资源

Angiogenesis is a critical process in biology, but conventional treatments for pathological angiogenesis have limitations. This study explores the use of nano-sized materials and optical or electrical stimuli to overcome these limitations. The use of conjugated polymer-based nanoparticles as photo-actuators shows promise in enhancing or reducing the angiogenic capability of endothelial cells. These findings provide valuable evidence for a potential paradigm shift in therapeutic angiogenesis.
Angiogenesis is a fundamental process in biology, given the pivotal role played by blood vessels in providing oxygen and nutrients to tissues, thus ensuring cell survival. Moreover, it is critical in many life-threatening pathologies, like cancer and cardiovascular diseases. In this context, conventional treatments of pathological angiogenesis suffer from several limitations, including low bioavailability, limited spatial and temporal resolution, lack of specificity and possible side effects. Recently, innovative strategies have been explored to overcome these drawbacks based on the use of exogenous nano-sized materials and the treatment of the endothelial tissue with optical or electrical stimuli. Here, conjugated polymer-based nanoparticles are proposed as exogenous photo-actuators, thus combining the advantages offered by nanotechnology with those typical of optical stimulation. Light excitation can achieve high spatial and temporal resolution, while permitting minimal invasiveness. Interestingly, the possibility to either enhance (approximate to+30%) or reduce (up to -65%) the angiogenic capability of model endothelial cells is demonstrated, by employing different polymer beads, depending on the material type and the presence/absence of the light stimulus. In vitro results reported here represent a valuable proof of principle of the reliability and efficacy of the proposed approach and should be considered as a promising step towards a paradigm shift in therapeutic angiogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据