4.6 Article

Neural mechanisms of working memory dysfunction in patients with chronic insomnia disorder

期刊

SLEEP MEDICINE
卷 112, 期 -, 页码 151-158

出版社

ELSEVIER
DOI: 10.1016/j.sleep.2023.10.014

关键词

Chronic insomnia disorder; Working memory; Event-related potentials; Time-frequency analysis; Functional connectivity

向作者/读者索取更多资源

This study investigates the neural mechanisms underlying working memory impairment in patients with chronic insomnia disorder using event-related potentials and resting-state functional connectivity approaches. The results show deficits in working memory capacity in patients with chronic insomnia disorder, with alterations in connectivity patterns within and between the frontal and temporal regions.
Objective: This study aimed to investigate the neural mechanisms underlying working memory impairment in patients with chronic insomnia disorder (CID) using event-related potentials (ERP) and resting-state functional connectivity (rsFC) approaches. Methods: Participants, including CID patients and healthy controls (HCs), completed clinical scales and underwent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). EEG analysis compared reaction times, P3 amplitudes, event-related spectral perturbations (ERSP), and inter-trial phase synchronisation (ITPS) between CID patients and HCs. Subsequently, frontal regions (i.e., the Superior Frontal Gyrus [SFG] and Middle Frontal Gyrus [MFG]) corresponding to the EEG were selected as seeds for rsFC analysis. Correlation analyses were conducted to further investigate the relationship between functional connectivity abnormalities in brain regions and clinical symptom severity and P3 amplitude in CID patients. Results: Compared to HCs, CID patients exhibited slower reaction times across all working memory conditions, with the deficits becoming more pronounced as memory load increased. ERP analysis revealed increased P3 amplitude, theta wave power, and reduced inter-trial synchrony in CID patients. rsFC analysis showed decreased connectivity of SFG-posterior cingulated cortex (PCC), SFG-MFG, and MFG-frontal pole (FP), and increased connectivity of MFG- Middle Temporal Gyrus (MTG)in CID patients. Importantly, a significant correlation was found between the rsFC of SFG-MTG and P3 amplitude during 1-back. Conclusion: This study confirms deficits in working memory capacity in patients with CID, specifically in the neural mechanisms of cognitive processing that vary depending on the level of cognitive load. Alterations in connectivity patterns within and between the frontal and temporal regions may be the neural basis of the cognitive impairment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据