4.7 Article

Endophytic bacterial communities in ungerminated and germinated seeds of commercial vegetables

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-47099-4

关键词

-

向作者/读者索取更多资源

This study investigated the composition and putative functions of endophytic bacterial communities in ungerminated and germinated seeds of commercial vegetables. The results revealed a high variability in the abundance, diversity, composition, and functionality of endophytic bacteria between ungerminated and germinated seeds in globally commercialized vegetables.
Chile is a prominent seed exporter globally, but the seed microbiome of vegetables (46% of seeds) and its role in the early stages of plant growth have remained largely unexplored. Here, we employed DNA metabarcoding analysis to investigate the composition and putative functions of endophytic bacterial communities in ungerminated and germinated seeds of the commercial vegetables Apiaceae (parsley and carrot), Asteraceae (lettuce), Brassicaceae (cabbage and broccoli), and Solanaceae (tomato). Bacterial quantification showed 104 to 108 copies of the 16S rRNA gene per gram of ungerminated and germinated seeds. Alpha diversity analysis (e.g., Chao1, Shannon, and Simpson indices) did not indicate significant differences (Kruskal-Wallis test) between ungerminated and germinated seeds, except for Solanaceae. However, beta diversity (PCoA) analysis showed distinctions (Adonis test) between ungerminated and germinated seeds, except Apiaceae. Pseudomonadota and Bacillota were identified as the dominant and specialist taxa in both ungerminated and germinated seed samples. Chemoheterotrophy and fermentation were predicted as the main microbial functional groups in the endophytic bacterial community. Notably, a considerable number of the 143 isolated endophytic strains displayed plant growth-promoting traits (10 to 64%) and biocontrol activity (74% to 82%) against plant pathogens (Xanthomonas and Pseudomonas). This study revealed the high variability in the abundance, diversity, composition, and functionality of endophytic bacteria between ungerminated and germinated seeds in globally commercialized vegetables. Furthermore, potential beneficial endophytic bacteria contained in their seed microbiomes that may contribute to the microbiome of the early stages, development, growth and progeny of vegetables were found.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据