4.6 Article

A single-phase gadolinium-doped ceria cathode for highly efficient CO2 electrolysis

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 -, 期 -, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ta03977c

关键词

-

向作者/读者索取更多资源

This study demonstrates stable high performance of ceria-based solid-oxide cells (SOCs) in CO2 electrolysis, paving the way for the development of nickel-free SOCs for direct CO2 electrolysis. The use of doped ceria as a fuel electrode shows excellent carbon deposition resistance and high electronic conductivity, leading to the best electrode performance reported to date among all-ceramic cathode materials.
High-temperature solid-oxide CO2 electrolysers enable high-efficiency conversion of electrical energy to valuable fuels and chemicals and as such facilitate a sustainable-energy technology. Conventional cermet-based fuel electrodes used in such solid-oxide cells (SOCs) like nickel-yttria-stabilized zirconia (Ni-YSZ) suffer from morphological degradation and destructive carbon deposition. In recent years, there has been an increasing interest in employing single-phase ceria-based fuel electrodes, which are known to exhibit excellent carbon deposition resistance. Under sufficiently reducing conditions, doped ceria (substituted with trivalent cations such as samarium or gadolinium to generate mobile oxygen vacancies) becomes a mixed ionic-electronic conductor, showing appreciable electronic conductivity. Here, we show for the first time stable high performance in CO2 electrolysis using a ceria-based SOC. The single full cell incorporating a 10 mol% gadolinium-doped ceria (GCO) fuel electrode delivers a current density as high as 1.51 A cm(-2) at 800 degrees C during pure CO2 electrolysis, which is the best electrode performance reported to date among all-ceramic cathode materials. We demonstrate that the electrode performance in CO2 electrolysis is linked with the electronic conductivity, and hence, with the electronic charge carrier concentration in GCO. The results of the present work pave the way for development of robust, nickel-free SOCs for direct CO2 electrolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据