4.8 Article

Hyperbolic Polaritonic Rulers Based on van der Waals α-MoO3 Waveguides and Resonators

期刊

ACS NANO
卷 17, 期 22, 页码 23057-23064

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.3c08735

关键词

nanophotonics; polaritonics; van der Waalsmaterials; near-field optical microscopy; nanometrology

向作者/读者索取更多资源

This study presents hyperbolic polaritonic rulers based on low-dimensional, strongly anisotropic nanomaterials, which exhibit near-field polaritonic characteristics that are highly sensitive to device geometry. Using scanning near-field optical microscopy, the researchers demonstrate the strongly confined image polariton modes supported by these rulers and describe and predict their behavior using a simple analytic model.
Low-dimensional, strongly anisotropic nanomaterials can support hyperbolic phonon polaritons, which feature strong light-matter interactions that can enhance their capabilities in sensing and metrology tasks. In this work, we report hyperbolic polaritonic rulers, based on microscale alpha-phase molybdenum trioxide (alpha-MoO3) waveguides and resonators suspended over an ultraflat gold substrate, which exhibit near-field polaritonic characteristics that are exceptionally sensitive to device geometry. Using scanning near-field optical microscopy, we show that these systems support strongly confined image polariton modes that exhibit ideal antisymmetric gap polariton dispersion, which is highly sensitive to air gap dimensions and can be described and predicted using a simple analytic model. Dielectric constants used for modeling are accurately extracted using near-field optical measurements of alpha-MoO(3 )waveguides in contact with the gold substrate. We also find that for nanoscale resonators supporting in-plane Fabry-Perot modes, the mode order strongly depends on the air gap dimension in a manner that enables a simple readout of the gap dimension with nanometer precision.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据