4.5 Article

A novel hierarchical distributed vehicular edge computing framework for supporting intelligent driving

期刊

AD HOC NETWORKS
卷 153, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.adhoc.2023.103343

关键词

Vehicular edge computing; Distributed computing; Scheduling; Computing task offloading; Mobility-aware

向作者/读者索取更多资源

The focus of this research is to effectively coordinate the limited computing power of various components in intelligent transportation systems (ITS) and provide reliable support for resource-intensive applications through efficient resource allocation methods in the highly dynamic Internet-of-Vehicles environment. A novel joint computing and communication resource scheduling method is proposed, which includes a hierarchical three-layer Vehicular Edge Computing (VEC) framework and onboard joint computation offloading and transmission scheduling policy. Extensive simulation tests and ablation experiments demonstrate the effectiveness and stability of the proposed method in achieving stable performance and reducing scheduling overhead, improving resource utilization, and minimizing data transmission delay caused by vehicle motion.
Recently, various infrastructure-assisted or onboard driving assistant applications have been proposed as a component of intelligent transportation systems (ITS) to improve the transportation system's efficiency and release public concern about road safety. However, such AI-assisted intelligent applications are mainly data-driven and put great demands on the computing power of the ITS systems. Therefore, in the highly dynamic Internet-of-Vehicles environment in ITS, how to effectively coordinate the limited computing power of the various components of the system and realize reliable support for such resource-consuming applications through efficient resource allocation methods is the focus of our research. Accordingly, a novel joint computing and communication resource scheduling method is proposed to fulfill those ITS applications' inherent heterogeneous quality of service (QoS) requirements. By fully exploiting the computing resources provided by the onboard computing device, the edge computing device located in the vehicle's proximity and remote data center, we designed a hierarchical three-layer Vehicular Edge Computing (VEC) framework. Briefly, an onboard joint computation offloading and transmission scheduling policy is designed to assign corresponding offloading decisions to the locally generated computing tasks by considering the vehicle's computing resources and real-time network link status. Additionally, a new distributed resource allocation policy is developed for the edge devices, in which we derive a server selection policy and allocate communication time based on our proposed metric. To evaluate the performance and validate the effectiveness of our proposed method, we conduct extensive simulation tests and ablation experiments, respectively. The results show that our approach can achieve stable performance in various experimental settings. Also, compared to the state-of-the-art algorithms, our joint resource allocation policy significantly reduces the scheduling overhead, improves the utilization of system resources, and minimizes the data transmission delay caused by vehicle motion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据