4.6 Article

Single Crystal Microrod Based Homonuclear Photonic Molecule Lasers

期刊

ADVANCED OPTICAL MATERIALS
卷 5, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.201600744

关键词

-

资金

  1. NSFC [11374078]
  2. Shenzhen Fundamental research projects [JCYJ20160301154309393, JCYJ20160505175637639, JCYJ20160427183259083]

向作者/读者索取更多资源

Homonuclear photonic molecules are essential platforms to tailor and manipulate light in micro- and nanoscales. While photonic molecule microlasers have been widely explored in the past two decades, the unavoidable fabrication deviations make their resonant units hard to be identical and, thus, the corresponding practical applications are hindered by the experimental realization. Herein, the authors experimentally demonstrate a novel and effective approach to achieve homonuclear photonic molecule lasers with the synthesized single crystalline CH3NH3PbBr3 perovskite microwires. A single crystalline microwire is cut into two segments that are placed shoulder by shoulder in proximity. Due to their naturally flat facets and uniformity, the transverse whispering-gallery-mode lasers in two parts are almost the same and can naturally couple each other via evanescent waves. Consequently, bonding and antibonding modes are successfully achieved in many similar systems without applying any external controls. All of these experimental observations are consistent with the photonic molecule theory and are confirmed with numerical calculations. This research can be applied to all bottom-up synthesized microwires and, thus, will open a new avenue of bottom-up synthesized microrods to quantum optics and photonic circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据