4.8 Article

An in vitro model system based on calcium- and phosphate ion-induced hMSC spheroid mineralization

期刊

MATERIALS TODAY BIO
卷 23, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtbio.2023.100844

关键词

Mesenchymal stromal cells; Spheroids; Calcium; Phosphate; Mineralization; Bone; Regenerative medicine

向作者/读者索取更多资源

This study presents a platform for creating spheroids of human mesenchymal stromal cells and demonstrates their potential application in regenerative medicine. The mineralized spheroids promote osteogenic gene expression and can be used to study small molecule perturbations and extracellular-mediated calcification.
A challenge in regenerative medicine is creating the three-dimensional organic and inorganic in vitro microenvironment of bone, which would allow the study of musculoskeletal disorders and the generation of building blocks for bone regeneration. This study presents a microwell-based platform for creating spheroids of human mesenchymal stromal cells, which are then mineralized using ionic calcium and phosphate supplementation. The resulting mineralized spheroids promote an osteogenic gene expression profile through the influence of the spheroids' biophysical environment and inorganic signaling and require less calcium or phosphate to achieve mineralization compared to a monolayer culture. We found that mineralized spheroids represent an in vitro model for studying small molecule perturbations and extracellular mediated calcification. Furthermore, we demonstrate that understanding pathway signaling elicited by the spheroid environment allows mimicking these pathways in traditional monolayer culture, enabling similar rapid mineralization events. In sum, this study demonstrates the rapid generation and employment of a mineralized cell model system for regenerative medicine applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据