4.6 Article

Concurrent Cellulose Hydrolysis and Esterification to Prepare a Surface-Modified Cellulose Nanocrystal Decorated with Carboxylic Acid Moieties

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 4, 期 3, 页码 1538-1550

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.5b01489

关键词

Cellulose nanocrystals; Fischer esterification; Cellulose hydrolysis; Carboxylic acid; Nanocomposite; Poly(vinyl alcohol)

资金

  1. National Science Foundation Partnerships for International Research and Education (PIRE) Program [1243313]
  2. Office Of Internatl Science &Engineering
  3. Office Of The Director [1243313] Funding Source: National Science Foundation

向作者/读者索取更多资源

Cellulose nanocrystals (CNCs) were modified with natural di and tricarboxylic acids using two concurrent acid-catalyzed reactions including hydrolysis of amorphous cellulose segments and Fischer esterification, resulting in the introduction of free carboxylic acid functionality onto CNC surfaces. CNC esterification was characterized by Fourier transform infrared spectroscopy, C-13 solid state magic-angle spinning (MAS), and conductometric titration experiments. Average degree of substitution values for malonate, malate, and citrate CNCs are 0.16, 0.22, and 0.18, respectively. Despite differences in organic acid pK(a), optimal HCl cocatalyst concentrations were similar for malonic, malic, and citric acids. After isolation of modified CNCs, residual cellulose coproducts were identified that are similar to microcrystalline cellulose based on SEM and XRD analysis. As proof of concept, recycling experiments were carried to increase the yield of citrate CNCs. The byproduct was then recycled by subsequent citric acid/HCl treatments that resulted in 55% total yield of citrate CNCs. The crystallinity, morphology, and substitution of citrate CNCs from recycled cellulose coproduct is similar to modified citrate CNCs formed in the first reaction cycle. Thermal stability of all modified CNCs under air and nitrogen resulted in T-10% and T-50% values above 256 and 323 degrees C, respectively. Thus, they can be used for melt-processing operations performed at moderately high temperatures without thermal decomposition. Nanocomposites of poly(vinyl alcohol) with modified CNCs (1 wt % malonate, malate, citrate, and unmodified CNCs) were prepared. An increase in the thermal decomposition temperature by almost 40 degrees C was obtained for PVOH-citrate-modified CNC nanocomposites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据