4.8 Article

Electrochemical Activation of Ordered Mesoporous Solid Electrolyte Interphases to Enable Ultra-Stable Lithium Metal Batteries

期刊

ADVANCED ENERGY MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202302174

关键词

electrochemical activation; lithium metal batteries; ordered mesoporous coating; solid electrolyte interphase

向作者/读者索取更多资源

The rational construction of artificial solid electrolyte interphase (ASEI) using ordered-mesoporous powder zirconium oxophosphate (ZrOP) enables improved stability and cycling lifespan of Li metal batteries.
In Li metal batteries, the rational construction of artificial solid electrolyte interphase (ASEI) can homogenize the Li-ion flowing and Li-mass plating/stripping, and reinforce the mechanical and electrochemical stabilities of electrode-electrolyte interface. Here, an ordered-mesoporous powder zirconium oxophosphate (ZrOP) is proposed to construct a Li-ion conductive ASEI by brushing ZrOP on metallic Li. The P-induced amorphization in ZrOP is expected to accelerate the spontaneous lithiation reaction and promote the generation of P-contained Li-ion conductors and LiF domains in ASEI during Li anode cycling. The electrochemical activation of ASEI with promoted ionic conductivity and interconnected porous network is favorable for the homogeneous nucleation and growth of Li metal grains (with approximate to 10 mu m in size), and the suppression of Li dendrites and volume expansion during long-term Li plating and stripping. The ZrOP-modified Li symmetric cell enables a long lifespan of over 1600 h at 1 mA cm-2, and the corresponding LiNi0.8Co0.1Mn0.1O2 (NCM811) based full cell displays a stable cycling for at least 300 cycles with a capacity retention of 80% at 1 C. The modified thin Li foil (40 mu m in thickness) anode also enables a multilayered pouch cell based on a high-loading NCM811 cathode with stable cycling and reversible capacity over 1 Ah. An ordered-mesoporous powder zirconium oxophosphate (ZrOP) is proposed to construct a Li-ion conductive ASEI by brushing ZrOP on metallic Li. The modified thin Li foil anode enables a multilayered pouch cell based on a high-loading NCM811 cathode with stable cycling and reversible capacity over 1 Ah. This modification also takes the positive effect on the conversion-type Li-S and Li-FeF3 cells.image

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据