4.7 Article

Addressing the C/N imbalance in the treatment of irrigated agricultural water by using a hybrid constructed wetland at field-scale

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 348, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.119329

关键词

Constructed wetland; Agricultural water; C/N imbalance; Nitrate; Horizontal subsurface flow; Surface flow

向作者/读者索取更多资源

This study investigated the performance of a pilot plant with hybrid constructed wetlands (CWs) in removing excess nitrate-N (NO3--N) from agricultural drainage water. The addition of a C-rich substrate to the gravel was found to enhance NO3--N removal in the first phase, with soil addition being more effective than biochar addition. The contribution of different phases varied, with the first phase showing the largest contribution to NO3--N removal. The results highlight the importance of substrate addition and the sequence of different phases in CW systems for efficient nitrate removal.
To mitigate excess of nitrate-N (NO3--N) derived from agricultural activity, constructed wetlands (CWs) are created to simulate natural removal mechanisms. Irrigated agricultural drainage water is commonly characterized by an organic carbon/nitrogen (C/N) imbalance, thus, C limitation constrains heterotrophic denitrification, the main biotic process implicated in NO3--N removal in wetlands. We studied a pilot plant with three series (169 m(2)) of hybrid CWs over the first two years of functioning to examine: i) the effect of adding different C-rich substrates (natural soil vs. biochar) to gravel on NO3--N removal in a subsurface flow (Phase I), ii) the role of a second phase with a horizontal surface flow (Phase II) as a source of dissolved organic C (DOC), and its effect in a consecutive horizontal subsurface flow (Phase III) on NO3--N removal, and iii) the contribution of each phase to global NO3--N removal. Our results showed that the addition of a C-rich substrate to gravel had a positive effect on NO3--N removal in Phase I, with mean efficiencies of 40% and 17% for soil and biochar addition, respectively, compared to only gravel (0.75%). In Phase II, the algae growth turned into a DOC concentration increase, but it did not enhance NO3--N removal in Phase III. In series with C-rich substrate addition, the largest contribution to NO3--N removal was found in Phase I. However, in series with only gravel, Phase II was the most effective on NO3--N removal. Contribution of Phase III to NO3--N removal was almost negligible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据