4.7 Article

Potential of globally distributed topsoil mid-infrared spectral library for organic carbon estimation

期刊

CATENA
卷 235, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.catena.2023.107628

关键词

Soil monitoring; Mid-infrared spectroscopy; Soil spectral library; Fractional-order derivative; Deep learning

向作者/读者索取更多资源

This study used a globally distributed topsoil MIR spectral library to predict SOC using different modeling methods. The results showed that fractional-order derivatives (FODs) improved the prediction accuracy of SOC. The 0.75-order derivative was found to be optimal for ratio index-based linear regression (RI-LR) models, while the convolutional neural network (CNN) model outperformed other models for full-spectrum modeling.
Accurate monitoring of soil organic carbon (SOC) is critical for sustainable management of soil for improving its quality, function, and carbon sequestration. As a nondestructive, efficient, and low-cost technique, mid-infrared (MIR) spectroscopy has shown a great potential in rapid estimation of SOC, despite limited studies of the global scale. The objective of this work was to use a globally distributed topsoil MIR spectral library with 33,039 samples to predict SOC using different modeling methods. Effects of nine fractional-order derivatives (FODs) on the predicted accuracy of SOC were evaluated using four regression algorithms (i.e., ratio index-based linear regression, RI-LR; partial least squares regression, PLSR; Cubist; convolutional neural network, CNN). Squareroot transformation to SOC data was performed to minimize the skewness and non-linearity. Results indicated FOD to capture the subtle spectral details related to SOC, leading to improved predictions that may not be possible by the raw absorbance and common integer-order derivatives. Concerning the RI-LR models, the optimal validation result for SOC was obtained by 0.75-order derivative, with the ratio of performance to inter-quartile distance (RPIQ) of 1.85. Regarding the full-spectrum modeling for SOC, the CNN outperformed PLSR and Cubist models, irrespective of raw absorbance or eight FODs; the best-performing CNN model was achieved by 1.25order derivative (validation RPIQ = 6.33). It can be concluded that accurate estimation of SOC using large and diverse MIR spectral library at the global scale combined with deep-learning CNN model is feasible. This global-scale database is extremely valuable for us to deal with the shortage of soil data and to monitor the soils at different geographical scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据