4.7 Article

Physics-Informed Neural Networks for solving transient unconfined groundwater flow

期刊

COMPUTERS & GEOSCIENCES
卷 182, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cageo.2023.105494

关键词

Physics-informed neural networks; Unconfined aquifer; Machine learning; Numerical modeling; Space and time-varying boundary condition

向作者/读者索取更多资源

Neural networks excel in various machine learning applications, but lack physical interpretability and constraints, limiting their accuracy and reliability in predicting complex physical systems' behavior. Physics-Informed Neural Networks (PINNs) integrate neural networks with physical laws, providing an effective tool for solving physical problems. This article explores recent developments in PINNs, emphasizing their application in solving unconfined groundwater flow, and discusses challenges and opportunities in this field.
Neural networks excel in various machine learning applications; however, they lack the physical interpretability and constraints crucial for numerous scientific and engineering problems. This limitation hinders their ability to accurately capture and predict complex physical systems' behavior, potentially yielding inaccurate or unreliable results. Physics-Informed Neural Networks (PINNs) are a class of machine learning models that integrate the power of neural networks with the physical laws governing natural phenomena. PINNs provide an effective tool for solving intricate physical problems, ranging from fluid dynamics to materials science, by incorporating physical constraints into the neural network architecture. PINNs can substantially enhance the accuracy and efficiency of model predictions, even in data-limited situations. This work offers insight into recent developments in the PINN field, including their mathematical formulation and training algorithms, and emphasizes their application in solving transient unconfined groundwater flow. In this context, the phreatic surface acts as a spatiotemporally varying boundary condition, and properly accounting for its position is vital for precise predictions of unconfined groundwater flow and related environmental and engineering applications. The study's objective is to develop a reliable model for estimating the phreatic surface and the spatiotemporal distribution of piezometric heads in a vertical cross-section of an unconfined aquifer. Two cases are examined: the first involves a homogeneous and isotropic aquifer, while the second comprises a mildly heterogeneous and anisotropic one. The challenges and opportunities arising from this emerging research area are also explored, and essential directions for future research are underscored.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据