4.7 Article

Road Network-Guided Fine-Grained Urban Traffic Flow Inference

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2023.3327386

关键词

Coarse granularity; fine granularity; prior knowledge; road network; traffic flow inference

向作者/读者索取更多资源

In this work, a novel road-aware traffic flow magnifier (RATFM) is proposed to accurately infer fine-grained traffic flow by explicitly exploiting the prior knowledge of road networks. Extensive experiments show that the proposed RATFM outperforms state-of-the-art models under various scenarios.
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem, which can help greatly reduce the number of the required traffic monitoring sensors for cost savings. In this work, we note that traffic flow has a high correlation with road network, which was either completely ignored or simply treated as an external factor in previous works. To facilitate this problem, we propose a novel road-aware traffic flow magnifier (RATFM) that explicitly exploits the prior knowledge of road networks to fully learn the road-aware spatial distribution of fine-grained traffic flow. Specifically, a multidirectional 1-D convolutional layer is first introduced to extract the semantic feature of the road network. Subsequently, we incorporate the road network feature and coarse-grained flow feature to regularize the short-range spatial distribution modeling of road-relative traffic flow. Furthermore, we take the road network feature as a query to capture the long-range spatial distribution of traffic flow with a transformer architecture. Benefiting from the road-aware inference mechanism, our method can generate high-quality fine-grained traffic flow maps. Extensive experiments on three real-world datasets show that the proposed RATFM outperforms state-of-the-art models under various scenarios. Our code and datasets are released at https://github.com/luimoli/RATFM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据