4.8 Article

Bio-inspired Halogen Bonding-Promoted Cross Coupling for the Synthesis of Organoselenium Compounds

期刊

ACS CATALYSIS
卷 13, 期 22, 页码 15194-15202

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.3c04601

关键词

photochemistry; organoseleniumcompounds; EDAcomplex; halogen bonding; chalcogen; photoredoxcatalysis; amino acid; late-stage functionalization

向作者/读者索取更多资源

Noncovalent interactions, particularly halogen bonding, play a crucial role in organic synthesis and catalysis, including the synthesis of organoselenium compounds. By utilizing the reaction balance between an electron donor-acceptor complex and Ph2Se2, the halogen bonding interaction facilitates the formation of C-Se bonds through the capture of alkyl radicals. This synthetic strategy has been successfully applied in the transformation of various carboxylic acids, natural products, drugs, and alpha-selenoamino acids.
Noncovalent interactions play fundamental roles in many organic and biochemical processes, including hydrogen and halogen bonding, which are vital in the fields of synthesis and catalysis. Herein, we describe the application of halogen bonding interactions to facilitate the reaction balance between an electron donor-acceptor (EDA) complex and Ph2Se2 for the synthesis of a series of organoselenium compounds. The EDA complex concept has recently emerged as an attractive path for visible light-induced transformations due to facile reaction conditions and the avoidance of photocatalysts. Density functional theory calculations reveal that an iodine-pi* interaction leads to the formation of an alkyl radical from the N-(acyloxy)phthalimide ester. The resulting alkyl radical is captured by the diselenide-I center dot complex to form the C-Se bond. The developed selenide synthesis strategy has been applied in the transformation of primary, secondary, and tertiary carboxylic acids as well as a series of natural products, drugs, and alpha-selenoamino acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据