4.6 Article

Dermatophytes and mammalian hair: aspects of the evolution of Arthrodermataceae

期刊

FUNGAL DIVERSITY
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s13225-023-00526-3

关键词

Arthrodermataceae; Hair; EIF2AK4; SUB1; Trichophyton; Keratin

类别

向作者/读者索取更多资源

This study assessed the phylogeny of dermatophytes using EIF2AK4 and SUB1 genes, and found that these genes provide a reasonably correct reflection of the evolution of Arthrodermataceae. The study also analyzed the keratinolytic responses of different dermatophyte species to various mammal hairs.
Dermatophytes and other members of Onygenales are unique in their ability to degrade keratin, affecting hair and nails, and in the case of human hosts, causing skin infections. Subtillisins are essential proteases in keratin assimilation, and subtilisin-like protease 1 (SUB1) and SUB3-7 are specific for dermatophytes. eIF2 alpha kinases are serine-threonine kinases that perform essential functions in response to infection, proteotoxicity, and nutrient scavenging. The relatively conserved nature of EIF2AK4 among fungi makes them potential evolutionary markers, which may contribute to a deeper understanding of dermatophyte taxonomy and evolution. This study aimed to assess the phylogeny of dermatophytes by examining the EIF2AK4 and SUB1 genes compared to the ITS gene marker. The phylogenetic trees generated from the EIF2AK4 and SUB1 genes exhibited a similar topology, which differed from that observed in the ITS tree. Our preliminary findings with a limited dataset suggest that the EIF2AK4 and SUB1 genes provide a reasonably correct reflection of the evolution of Arthrodermataceae. In addition, the study analyzed in vitro keratinolytic responses of 19 dermatophyte species using hairs of a broad range of mammals, including ancestral as well as derived species, as substrates. Trichophyton mentagrophytes and Nannizzia gypsea were the most active in degrading hair, while Trichophyton verrucosum, Trichophyton tonsurans and Epidermophyton floccosum showed low response. Hairs of Hyracoidea and Rodentia were most affected of all mammal hairs, while in contrast, bat hairs were difficult to degrade by nearly all tested dermatophyte species. Zoophilic species showed more activity than anthropophilic dermatophytes, but hair degradation profiles were not diagnostic for particular dermatophyte species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据