4.7 Article

Dynamic response and vulnerability analysis of pier under near-field underwater explosion

期刊

ENGINEERING FAILURE ANALYSIS
卷 155, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfailanal.2023.107749

关键词

Underwater explosion; Anti-explosion performance; Damage assessment; Bridge pier; Explosive vulnerability

向作者/读者索取更多资源

This paper studies the dynamic response and damage mechanism of piers of sea-crossing bridges under underwater explosion loads using the arbitrary Lagrangian-Eulerian (ALE) method. The correctness of the explosive load and reinforced concrete material models is verified, and a finite element (FE) model of a pier under an underwater explosion load is established. The study shows that the detonation point location and explosive weight have significant effects on the damage to the pier.
Marine reinforced concrete constructions (suspended tunnels, undersea pipelines, and cross-sea bridges) are inherently at risk from underwater explosions due to the rising incidence of worldwide terrorism. Sea-crossing bridges are as an important land-sea connection channel, whose anti-explosion performance cannot be ignored. In this paper, the dynamic response and damage mechanism of piers of sea-crossing bridge under underwater explosion loads are studied by the arbitrary Lagrangian-Eulerian (ALE) method. Firstly, the correctness of the explosive load and reinforced concrete material models is verified by the Zamyshlyaev formula and underwater explosion test, respectively. Secondly, the finite element (FE) model of a pier under an underwater explosion load is established. Taking the residual vertical bearing capacity of the pier as the performance index, the damage evaluation method and four damage levels of the pier under explosion load are put forward. The study of different parameters such as explosive weight, explosion location, explosion height, and explosion distance shows that the damage to the pier is the most serious when the detonation point is directly below the projection of the pier cap. The residual bearing capacity of the pier falls exponentially as explosive weight increases. Different detonation heights have significant effects on the damage to the pier. Additionally, it is found using the explosion vulnerability analysis approach that the pier is very susceptible to collapse when the explosive weight is 350 kg.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据