4.7 Article

Immobilizing arsenic in contaminated anoxic aquifer sediment using sulfidated and uncoated zero-valent iron (ZVI)

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 462, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.132743

关键词

Nanoparticles; Iron corrosion; Arsenic oxidation; Groundwater; Field conditions

向作者/读者索取更多资源

This study collected sediment material from a contaminated anoxic aquifer in Sweden and investigated the immobilization of arsenic (As) by four commercial zero-valent iron (ZVI) particles. The results showed that uncoated ZVI particles performed better in immobilizing As, and the effect of particle size on the immobilization was small.
Arsenic (As) is carcinogenic and of major concern in groundwater. We collected sediment material from a contaminated anoxic aquifer in Sweden and investigated the immobilization of As by four commercial zero-valent iron (ZVI) particles. Solid-phase As and Fe speciation was assessed using X-ray absorption spectroscopy (XAS) and solution-phase As speciation using chromatographic separation. Without ZVI addition, arsenite dominated in solution and As(V) species in the solid phase. Adding ZVI caused a sharp increase in solution pH (9.3-9.8), favoring As oxidation despite a lowered redox potential. ZVI greatly improved As retention by complex binding of arsenate to the Fe(III) (hydr)oxides formed by ZVI corrosion. Uncoated ZVI, both in nano-and microscale, performed better than their sulfidated counterparts, partly due to occlusion of As by the Fe(III) (hydr) oxides formed. The effect of particle size (micro vs. nano ZVI) on As immobilization was small, likely because immobilization was related to the corrosion products formed, rather than the initial size of the particles. Our results provide a strong geochemical background for the application of ZVI particles to remove As in contaminated aquifers under anoxic conditions and illustrate that immobilization mechanisms can differ between ZVI in As spiked solutions and sediment suspensions.Environmental implication: Arsenic ranks first on the list by the US ATSDR of substances posing a threat to human health and the WHO considers groundwater the riskiest source for human intake of As. However, dealing with As contamination remains a scientific challenge. We studied the immobilization of groundwater As by commercially available ZVI particles at field-realistic conditions. Arsenic immobilization was highly efficient in most cases, and the results suggest this is a promising in situ strategy with long-term performance. Our results provide a strong geochemical background for using ZVI to remove As in contaminated anoxic aquifers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据