4.7 Article

Carboxylated Pocoa polysaccharides inhibited oxidative damage and inflammation of HK-2 cells induced by calcium oxalate nanoparticles

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 169, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2023.115865

关键词

Anti-inflammation; Carboxymethylated polysaccharide; Nanocrystals; Cytoendocytosis; Oxidative damage

向作者/读者索取更多资源

By studying the Chinese medicine Pocoa (PCPs) with different carboxyl group (-COOH) contents, it was found that PCPs can inhibit oxidative damage and inflammatory response of renal epithelial cells, and this inhibitory effect is enhanced with the increase of carboxyl group content.
The inhibitory effects of Chinese medicine Pocoa (PCPs) with different carboxyl group (-COOH) contents on oxidative damage and inflammatory response of renal epithelial cells and the influence of -COOH content in polysaccharides were investigated. HK-2 cell damage model was established by nanocalcium oxalate crystals (nanoCOM), and then PCPs with -COOH contents of 2.56% (PCP0), 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) were used to protect the cells. PCPs could inhibit the damage of nanoCOM to HK-2 cells, increase cell viability, restore cytoskeleton and morphology, and improve lysosomal integrity. PCPs can reduce the oxidative stress response of nanoCOM to cells, inhibit the opening of mPTP and cell necrotic apoptosis, reduce the level of Ca2+ ions in cells, the production of ATP and MDA, and increase SOD expression. PCPs can also reduce the cellular inflammatory response caused by oxidative damage, and reduce the expression of nitric oxide (NO), inflammatory factors TNF-alpha, IL-6, IL-1 beta and MCP-1, as well as the content of inflammasome NLRP3. After protection, PCPs can inhibit the endocytosis of nanoCOM crystals by cells. With the increase in -COOH content in PCPs, its ability to inhibit nanoCOM cell damage, reduce oxidative stress, reduce inflammatory response, and inhibit crystal endocytosis increases, that is, PCP3 with the highest -COOH content, shows the best biological activity. Inhibiting cell damage and inflammation and reducing a large amount of endocytosis of crystals by cells are beneficial to inhibit the formation of kidney stones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据