4.7 Article

Mechanistic aspects of n-hexadecane hydroconversion: Impact of di-branched isomers on the cracked products distribution

期刊

FUEL
卷 358, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2023.130264

关键词

Hydrocracking; Zeolite; Mesoporous silica; Mechanism; Product distribution

向作者/读者索取更多资源

The mechanism of n-hexadecane (n-C16) hydroisomerization/hydrocracking was investigated using bifunctional catalysts with Pd and Pt as (de)hydrogenation components and large-pore zeolites and (ordered) mesoporous materials as acidic supports. The results showed that the isomer distribution and cracked products distribution changed with the increase of n-C16 conversion.
The mechanism of n-hexadecane (n-C16) hydroisomerization/hydrocracking was studied over bifunctional catalysts employing Pd and Pt as (de)hydrogenation components and large-pore zeolites and (ordered) mesoporous materials as acidic supports. Zeolite Y and Beta supports were compared to amorphous silica-alumina as well as aluminium-containing ordered mesoporous MCM-41, MCM-48 and SBA-15 materials to cover a wide range of pore sizes and topologies. Products were analyzed in terms of mono-and di-branched C16 isomers and cracked products as a function of the n-C16 conversion. All samples followed a similar mechanism in which, at low conversion, di-branched isomers with methyl groups toward the ends of the tetradecane chain were observed. At higher conversion, the products shifted to isomers with methyl groups closer to the center at higher n-C16 conversion. Consistent with these differences, the typical 'M' shape distribution of cracked products was obtained at low conversion, which evolved into ideal symmetric cracking patterns at higher conversion. The unusual di-branched isomer distribution at low conversion and the corresponding 'M' shaped cracked products distribution have earlier been associated with pore mouth catalysis induced by restricted diffusion in medium-pore zeolites. Here we show that such reaction pathways also occur in catalysts with large enough pores to exclude diffusion restrictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据