4.5 Article

Analysis of the effect of multiple thermal-cold cycles on the bearing performance of phase change energy piles

期刊

GEOTHERMICS
卷 116, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.geothermics.2023.102858

关键词

Energy pile; Phase change energy storage concrete; Thermal-cold cycle; Load-bearing capability

向作者/读者索取更多资源

This study compared the bearing performance between phase change energy piles (GPEP) and traditional energy piles (TEP) using indoor modeling tests and theoretical formulas. The results showed that GPEP increased the ultimate bearing capacity of a single pile by about 13% compared to TEP. Additionally, the phase change materials effectively restricted the temperature-drag response of energy piles.
As a famous underground heat transfer structure, energy piles have been widely used in geothermal energy development. However, the effect of the cyclic temperature field on the ultimate load capacity of a single pile is substantial. In this study, model piles were poured using a phase change energy storage concrete based on Gum Arabic with polyethylene glycol 600. An indoor modeling test was designed to compare the phase change energy pile (GPEP) with the traditional energy pile (TEP). The ultimate bearing capacity of a single pile is obtained through theoretical formulas and static load tests to compare the bearing performance superiority of GPEP over TEP comprehensively. The response mechanism of GPEP to temperature changes was determined by evaluating the temperature change of the pile body, shear strength, water content of the soil facing the pile, thermally induced frictional resistance, and pressure exerted by the soil facing the pile. The results indicate that the single piles of GPEP increased the ultimate bearing capacity by 13.04 % (theoretical formula) and 13.70 % (static load test) compared to TEP. Due to the energy storage properties, phase change materials effectively restrict the temperature-drag response of energy piles. This study serves as a valuable reference for the practical engineering implementation of GPEP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据