4.7 Article

Unraveling Complex Hysteresis Phenomenon in 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine Monolayer: Insight into Factors Influencing Surface Dynamics

期刊

出版社

MDPI
DOI: 10.3390/ijms242216252

关键词

dissipated energy; DPPC monolayer; hysteresis; molecular packing; phase transition

向作者/读者索取更多资源

This study examines the hysteresis phenomenon in DPPC monolayers, focusing on the impact of various variables on key indicators such as the pi-A isotherm curve and compression modulus. The findings reveal that these factors significantly influence the structural and dynamic properties of the monolayers, with the hysteresis loop providing valuable insights into their viscoelasticity and phase transition changes.
This study explores the hysteresis phenomenon in DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) monolayers, considering several variables, including temperature, compression and expansion rates, residence time, and subphase content. The investigation focuses on analyzing the influence of these variables on key indicators such as the pi-A isotherm curve, loop area, and compression modulus. By employing the Langmuir-Blodgett technique, the findings reveal that all the examined factors significantly affect the aforementioned parameters. Notably, the hysteresis loop, representing dissipated energy, provides valuable insights into the monolayer's viscoelasticity, molecular packing, phase transition changes, and resistance during the isocycle process. These findings contribute to a comprehensive understanding of the structural and dynamic properties of DPPC monolayers, offering insights into their behavior under varying conditions. Moreover, the knowledge gained from this study can aid in the development of precise models and strategies for controlling and manipulating monolayer properties, with potential applications in drug delivery systems, surface coatings, as well as further investigation into air penetration into alveoli and the blinking mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据