4.7 Article

Type II Toxin-Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp PCC 6803

期刊

TOXINS
卷 8, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/toxins8070228

关键词

bacterial toxins; cyanobacteria; hydrogenase; PIN-domain; cibonuclease; RNA degradation; RNA interferase; RNA turnover; toxin-antitoxin; VapC

资金

  1. Deutsche Forschungsgemeinschaft, Bonn [HE 2544/6-1, HE 2544/8-2]

向作者/读者索取更多资源

Bacterial toxin-antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013-Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056-Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据