4.6 Article

Jacobian-free implicit MDRK methods for stiff systems of ODEs

期刊

APPLIED NUMERICAL MATHEMATICS
卷 196, 期 -, 页码 1-17

出版社

ELSEVIER
DOI: 10.1016/j.apnum.2023.10.007

关键词

Multiderivative Runge-Kutta; Jacobian-free; ODE integrator

向作者/读者索取更多资源

This work presents an approximate family of implicit multiderivative Runge-Kutta time integrators for stiff initial value problems and investigates two different methods for computing higher order derivatives. Numerical results demonstrate that adding separate formulas yields better performance in dealing with stiff problems.
In this work, an approximate family of implicit multiderivative Runge-Kutta (MDRK) time integrators for stiff initial value problems is presented. The approximation procedure is based on the recent Approximate Implicit Taylor method (Baeza et al., 2020 [7]). As a Taylor method can be written in MDRK format, the novel family constitutes a multistage generalization. Two different alternatives are investigated for the computation of the higher order derivatives: either directly as part of the stage equation, or either as a separate formula for each derivative added on top of the stage equation itself. From linearizing through Newton's method, it turns out that the conditioning of the Newton matrix behaves significantly different for both cases. We show that direct computation results in a matrix with a conditioning that is highly dependent on the stiffness, increasing exponentially in the stiffness parameter with the amount of derivatives. Adding separate formulas has a more favorable behavior, the matrix conditioning being linearly dependent on the stiffness, regardless of the amount of derivatives. Despite increasing the Newton system significantly in size, through several numerical results it is demonstrated that doing so can be considerably beneficial.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据