4.6 Article

3DCNAS: A universal method for predicting the location of fluorescent organelles in living cells in three-dimensional space

期刊

EXPERIMENTAL CELL RESEARCH
卷 433, 期 2, 页码 -

出版社

ELSEVIER INC
DOI: 10.1016/j.yexcr.2023.113807

关键词

Transmission light microscopy; Cell organelle dynamics; 3DCNAS neural network; Neural architecture search

向作者/读者索取更多资源

This study proposes a method called 3DCNAS to predict subcellular structures of fluorescence using unlabeled transmitted light microscope images. The method leverages deep learning techniques to analyze cell images and extract meaningful information.
Cellular biology research relies on microscopic imaging techniques for studying the complex structures and dynamic processes within cells. Fluorescence microscopy provides high sensitivity and subcellular resolution but has limitations such as photobleaching and sample preparation challenges. Transmission light microscopy offers a label-free alternative but lacks contrast for detailed interpretation. Deep learning methods have shown promise in analyzing cell images and extracting meaningful information. However, accurately learning and simulating diverse subcellular structures remain challenging. In this study, we propose a method named three-dimensional cell neural architecture search (3DCNAS) to predict subcellular structures of fluorescence using unlabeled transmitted light microscope images. By leveraging the automated search capability of differentiable neural architecture search (NAS), our method partially mitigates the issues of overfitting and underfitting caused by the distinct details of various subcellular structures. Furthermore, we apply our method to analyze cell dynamics in genome-edited human induced pluripotent stem cells during mitotic events. This allows us to study the functional roles of organelles and their involvement in cellular processes, contributing to a comprehensive understanding of cell biology and offering insights into disease pathogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据