4.5 Article

Naringin attenuates oxaliplatin-induced nephrotoxicity and hepatotoxicity: A molecular, biochemical, and histopathological approach in a rat model

出版社

WILEY
DOI: 10.1002/jbt.23604

关键词

hepatorenal toxicity; inflammation; naringin; oxaliplatin; oxidative stress

向作者/读者索取更多资源

This study investigated the activity of naringin in oxaliplatin-induced hepatorenal toxicity. The results showed that naringin has antioxidant and anti-inflammatory effects, and can alleviate oxidative stress, inflammation, and cell apoptosis in liver and kidney tissues induced by oxaliplatin. Furthermore, naringin can reduce endoplasmic reticulum stress caused by oxaliplatin.
Oxaliplatin (OXL) is a significant therapy agent for the worldwide increase in cancer cases. Naringin (4 ',5,7-trihydroxy flavonon 7-rhamnoglucoside, NRG) has a wide range of biological and pharmacological activities, including antioxidant and anti-inflammatory potentials. This research aimed to investigate NRG activity in OXL-induced hepatorenal toxicity. Accordingly, OXL (4 mg/kg b.w.) in 5% glucose was injected intraperitoneally on the first, second, fifth, and sixth days, and NRG (50 and 100 mg/kg b.w.) was given orally 30 min before to treatment. Biochemical, genetic, and histological methods were utilized to investigate the function tests, oxidant/antioxidant status, inflammation, apoptosis, and endoplasmic reticulum (ER) stress pathways in kidney and liver tissues. Administration of NRG demonstrated an antioxidant effect by increasing the activities of OXL-induced reduced antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and decreasing the elevated lipid peroxidation parameter malondialdehyde levels. Nuclear factor-kappa B, tumor necrosis factor-alpha, interleukin-1 beta, and inducible nitric oxide synthase levels increased in OXL administered groups but reduced in NRG-treated groups. In the OXL-administered groups, NRG reduced the apoptosis-inducing factors Caspase-3 and B-cell lymphoma 2 (Bcl-2)-associated X protein levels, while elevating the antiapoptotic factor Bcl-2 levels. OXL triggered prolonged ER stress by increasing the levels of ER stress parameters activating transcription factor 6, protein kinase R-like ER kinase, inositol-requiring enzyme 1 alpha, and glucose-regulated protein 78. Therefore, with the NRG administration, this activity was reduced and the ER stress level decreased. Taken together, it was found that OXL induced toxicity by increasing the levels of urea and creatinine, alanine transaminase, aspartate aminotransferase, and alkaline phosphatase activities, inflammation, apoptosis, ER stress, and oxidants in the liver and kidney tissue, and NRG had a protective effect by reversing the deterioration in these pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据