4.8 Article

One-pot chemo-enzymatic synthesis and one-step recovery of length-variable long-chain polyphosphates from microalgal biomass

期刊

GREEN CHEMISTRY
卷 25, 期 23, 页码 9896-9907

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3gc03162d

关键词

-

向作者/读者索取更多资源

Phosphate is an essential ingredient in fertilizers and detergents, but it is a finite resource that may be exhausted within 70 years. Improper waste disposal can lead to eutrophication. Biological phosphorus removal is a sustainable method to recover and prevent ecosystem damage. Additionally, polyphosphates have various biological functions and biomedical applications, but efficient synthesis and application methods were lacking before this study.
Phosphate, an essential ingredient in fertilizers and detergents used daily worldwide, is a finite resource that may be exhausted within 70 years, while improper phosphate waste disposal into aquatic environments will result in eutrophication. Despite some chemical-based methods, biological phosphorus removal using polyphosphate-accumulating organisms, such as microalgae, is a sustainable alternative to reclaim phosphate from wastewater before wastewater enters aquatic environments, preventing ecosystem damage while recovering the phosphate for industrial use. Moreover, polyphosphates have profound biological functions and biomedical applications, serving as an energy stock, drug delivery vesicles, coagulation factors, and antiviral agents depending on the length of the polyphosphate chain, showing inherent value in polyphosphate recovery. However, before this study, there were no sustainable and efficient approaches to synthesizing purified polyphosphates enriched with different lengths, which limited industrial and biomedical applications. Here, by leveraging the power of thermodynamic coupling and phase transitions, we established a one-pot, two-step multi-enzyme cascade (comprising creatine kinase and two polyphosphate kinases) to transform heterogeneous polyphosphate in microalgae biomass to insoluble long-chain polyphosphate 1300-mers, allowing for further purification in a single step. In the cascade reactions, introducing creatine as the high-energy P-shuttle enables controlled manipulation of the creatine kinase reaction direction via pH modulation, effectively circumventing the competition between the two polyphosphate kinase-mediated reactions. Finally, we optimized a thermo-digestion approach to transform polyphosphate 1300-mers into shorter polyphosphates enriched with a specific narrow length range. Therefore, the processes established here create a sustainable P bioeconomy platform to refine microalgal biomass for biotechnological use. Phosphate, an essential ingredient in fertilizers and detergents used daily worldwide, is a finite resource that may be exhausted within 70 years, while improper phosphate waste disposal into aquatic environments will result in eutrophication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据