4.7 Article

Novel Approaches for Regionalising SWAT Parameters Based on Machine Learning Clustering for Estimating Streamflow in Ungauged Basins

期刊

WATER RESOURCES MANAGEMENT
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11269-023-03678-8

关键词

Hydrological Model; Streamflow Prediction; Ungauged Basins; Regionalisation; Clustering; SWAT

向作者/读者索取更多资源

This study focuses on streamflow prediction in the Mino River basin in northwest Spain. A novel regionalisation approach is developed, which utilizes hydrological similarities between gauged and ungauged subbasins, as well as physiographic and climatic attributes, to predict streamflow. The results demonstrate satisfactory performance in the streamflow prediction, indicating the effectiveness of the regionalisation approach.
Streamflow prediction in ungauged basins (PUB) is necessary for effective water resource management, flood assessment, and hydraulic engineering design. Spain is one of the countries in Europe expected to suffer the most from the consequences of climate change, notably an increase in flooding. The authors selected the Mino River basin in the northwest of Spain, which covers an area of 2,168 km2, to develop a novel approach for predicting streamflow in ungauged basins. This study presents a regionalisation of the soil and water assessment tool (SWAT), a semi-distributed, physically based hydrological model. The regionalisation approach transfers SWAT model parameters based on hydrological similarities between gauged and ungauged subbasins. The authors used k-means and expectation-maximisation (EM) machine learning clustering techniques to group 30 subbasins (9 gauged subbasins) into homogeneous, physical, similarity-based clusters. Furthermore, the regionalisation featured physiographic attributes (basin area, elevation, and channel length and slope) and climatic information (precipitation and temperature) for each subbasin. For each homogeneous group, the SWAT model was calibrated and validated for the gauged basins (donor basins), and the calibrated parameters were transferred to the pseudo-ungauged basins (receptor basins) for streamflow prediction. The results of the streamflow prediction in the pseudo-ungauged basins demonstrate satisfactory performance in most of the cases, with average NSE, R2, RSR, and RMSE values of 0.78, 0.91, 0.42, and 5.10 m3/s, respectively. The results contribute to water planning and management and flood estimation in the studied region and similar areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据