4.7 Article

A 5-and a-half-year-experiment shows precipitation thresholds in litter decomposition and nutrient dynamics in arid and semi-arid regions

期刊

BIOLOGY AND FERTILITY OF SOILS
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00374-023-01779-5

关键词

Arid and semiarid regions; litter mass loss; litter nutrients' dynamics; precipitation thresholds; ecosystem functioning; precipitation limitation of decomposition

向作者/读者索取更多资源

Precipitation is a key driver of litter decomposition in arid/semiarid regions. Both precipitation surpluses and deficits affect litter decomposition, but their effects vary depending on the specific environment.
Precipitation is a key driver of litter decomposition in arid/semiarid regions; where soils are poor in organic matter, and thus re-incorporation of litter is key for soil nutrient accumulation and soil structure. It remains unclear, though, whether litter decomposition responds symmetrically to precipitation variation (e.g., if precipitation surpluses produce a stimulatory effect of a similar magnitude, but opposite direction to inhibitory effects of precipitation deficits), and whether litter decomposition and litter nutrient dynamics in arid and semiarid ecosystems that differ in climate show similar responses to precipitation. We set up a 5-and-a-half-year experiment that manipulated rainfall along a gradient (7 treatments): increases by 20%, 40%, and 60%, background precipitation, and reductions by the same 3 percentages. We applied such experiment in two sites with different pattens of precipitation (Urat: arid; and Naiman: semiarid) in Inner Mongolia to elucidate our questions. Litter mass loss and all nutrients that we measured (carbon, nitrogen, phosphorous, potassium, plus lignin) decomposed faster at the highest level of surplus precipitation, and more slowly in the two largest precipitation reductions. This indicates that these levels of precipitation constitute thresholds (value of precipitation beyond which ecosystem function is critically altered). Litter decomposition in the semiarid site was faster and more complete, but decomposition in the direr Urat was more efficient per unit cumulative rainfall. Thus, site specific effects played an important role in decomposition. Reductions in precipitation decreased the loss of C, N, P, K, and lignin from litter; and clear precipitation thresholds in the dynamic of these nutrients in litter were observed. Overall, this indicated the importance of precipitation limitation at controlling nutrient release. Our study highlights the importance of long-term studies on litter decomposition in environments with slow decomposition rates, and the importance of taking into account mechanistic effects of water availability on decomposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据