4.4 Article

A Decoder Structure Guided CNN-Transformer Network for face super-resolution

期刊

IET COMPUTER VISION
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1049/cvi2.12251

关键词

computer vision; image processing

向作者/读者索取更多资源

The article introduces an architecture called the Decoder Structure Guided CNN-Transformer Network (DCTNet) for face image super-resolution. DCTNet utilizes a decoder structure as its backbone, focusing primarily on Global-Local Feature Extraction Units (GLFEU).
Recent advances in deep convolutional neural networks have shown improved performance in face super-resolution through joint training with other tasks such as face analysis and landmark prediction. However, these methods have certain limitations. One major limitation is the requirement for manual marking information on the dataset for multi-task joint learning. This additional marking process increases the computational cost of the network model. Additionally, since prior information is often estimated from low-quality faces, the obtained guidance information tends to be inaccurate. To address these challenges, a novel Decoder Structure Guided CNN-Transformer Network (DCTNet) is introduced, which utilises the newly proposed Global-Local Feature Extraction Unit (GLFEU) for effective embedding. Specifically, the proposed GLFEU is composed of an attention branch and a Transformer branch, to simultaneously restore global facial structure and local texture details. Additionally, a Multi-Stage Feature Fusion Module is incorporated to fuse features from different network stages, further improving the quality of the restored face images. Compared with previous methods, DCTNet improves Peak Signal-to-Noise Ratio by 0.23 and 0.19 dB on the CelebA and Helen datasets, respectively. Experimental results demonstrate that the designed DCTNet offers a simple yet powerful solution to recover detailed facial structures from low-quality images. An architecture called the Decoder Structure Guided CNN-Transformer Network (DCTNet) is presented by the authors for super-resolution of the face image. DCTNet utilises a decoder structure as its backbone, focusing primarily on Global-Local Feature Extraction Units (GLFEU).image

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据