4.6 Article

Issues on DFT plus U calculations of organic diradicals

期刊

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3cp04187e

关键词

-

向作者/读者索取更多资源

This study investigates the discrepancy in calculating the optimum U value for organic diradicals, finding that the difference in electronic delocalisation between open-shell singlet and triplet states is the cause of this discrepancy. The study also highlights the importance of considering more accurate methods or experimental values when calculating diradicals with low diradical character. Additionally, comparing DFT+U and hybrid-DFT calculations reveals an underestimation of the HOMO-LUMO gap for bisphenalenyls by DFT+U.
The diradical state is an important electronic state for understanding molecular functions and should be elucidated for the in silico design of functional molecules and their application to molecular devices. The density functional theory calculation with plane-wave basis and correction of the on-site Coulomb parameter U (DFT+U/plane-wave calculation) is a good candidate of high-throughput calculations of diradical-band interactions. However, it has not been investigated in detail to what extent the DFT+U/plane-wave calculation can be used to calculate organic diradicals with a high degree of accuracy. In the present study, using typical organic diradical molecules (bisphenalenyl molecules) as model systems, the discrepancy in the optimum U values between the two electronic states (open-shell singlet and triplet) that compose the diradical state is detected. The calculated results show that the reason for this U value discrepancy is the difference in electronic delocalisation due to pi-conjugation between the open-shell singlet and triplet states, and that the effect of U discrepancy becomes large as diradical character decreases. This indicates that it is necessary to investigate the U value discrepancy with reference to the calculated results by more accurate methods or to experimental values when calculating organic diradicals with low diradical character. For this investigation, the local magnetic moments, unpaired beta electron numbers, and effective magnetic exchange integral values can be used as reference values. For the effective magnetic exchange integral values, the effects of U discrepancy are partially cancelled out. However, because the effects may not be completely offset, care should be taken when using the effective magnetic exchange integral value as a reference. Furthermore, a comparison of DFT+U and hybrid-DFT calculations shows that the DFT+U underestimates the HOMO-LUMO gap of bisphenalenyls, although a qualitative discussion of the gap is possible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据