4.8 Article

APEX: an Annotation Propagation Workflow through Multiple Experimental Networks to Improve the Annotation of New Metabolite Classes in Caenorhabditis elegans

期刊

ANALYTICAL CHEMISTRY
卷 95, 期 48, 页码 17550-17558

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.3c02797

关键词

-

向作者/读者索取更多资源

The APEX workflow is a powerful approach for metabolite annotation and identification by leveraging multiple experimental networks. By integrating diverse networks and refining the selection of seed nodes, APEX enables comprehensive annotation in metabolomics research, enabling a deeper understanding of the metabolome.
Spectral similarity networks, also known as molecular networks, are crucial in non-targeted metabolomics to aid identification of unknowns aiming to establish a potential structural relation between different metabolite features. However, too extensive differences in compound structures can lead to separate clusters, complicating annotation. To address this challenge, we developed an automated Annotation Propagation through multiple EXperimental Networks (APEX) workflow, which integrates spectral similarity networks with mass difference networks and homologous series. The incorporation of multiple network tools improved annotation quality, as evidenced by high matching rates of the molecular formula derived by SIRIUS. The selection of manual annotations as the Seed Nodes Set (SNS) significantly influenced APEX annotations, with a higher number of seed nodes enhancing the annotation process. We applied APEX to different Caenorhabditis elegans metabolomics data sets as a proof-of-principle for the effective and comprehensive annotation of glycerophospho N-acyl ethanolamides (GPNAEs) and their glyco-variants. Furthermore, we demonstrated the workflow's applicability to two other, well-described metabolite classes in C. elegans, specifically ascarosides and modular glycosides (MOGLs), using an additional publicly available data set. In summary, the APEX workflow presents a powerful approach for metabolite annotation and identification by leveraging multiple experimental networks. By refining the SNS selection and integrating diverse networks, APEX holds promise for comprehensive annotation in metabolomics research, enabling a deeper understanding of the metabolome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据