4.8 Article

Birefringent Dispersion Optimization to Achieve Superior Nonlinear Optical Phase Matching in Deeper Solar-Blind UV Band from KH2PO4 to BeH3PO5

期刊

SMALL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202308811

关键词

birefringence; first-principles calculations; nonlinear optics; optical dispersion; phase matching

向作者/读者索取更多资源

This study uses a simplified dielectric model to uncover two key factors that affect the micro-optimization of transparent optical dispersion: the effective mass of excited states and the effective number of photo-responsive states. It proposes a method to improve the dispersion performance of classical phosphate UV-NLO crystals by substituting K+ and predicts the potential application of the optimized crystals in the solar-blind ultraviolet region.
Nonlinear-optical (NLO) crystals require birefringent phase matching (BPM), particularly in the solar-blind ultraviolet (UV) (200-280 nm) and deep-UV (100-200 nm) regions. Achieving BPM requires optimization of optical dispersion along with having large birefringence. This requirement is especially critical for structures with low optical anisotropy, including classical phosphate UV-NLO crystals like KH2PO4 (KDP). However, there is a scarcity of in-depth theoretical analysis and general design strategies based on structural chemistry to optimize dispersion. This study presents findings from a simplified dielectric model that uncover two vital factors to micro-optimize transparent optical dispersion: effective mass (m*) of excited states and effective number (N*) of photo-responsive states. Smoothing of dispersion occurs as m* increases and N* decreases. First-principles analysis of deep-UV KBe2BO3F2-family structures is used to confirm the conciseness and validity of the model. It further proposes substituting K+ with Be(2+ )to decrease N* and increase m* while enlarging bandgap. This will lead to improved dispersion and an overall enhancement of KDP's BPM capability. The existing BeH3PO5 (BDP) is predicted to improve the shortest BPM wavelength for second-harmonic generation, from 251 nm in KDP to 201 nm in BDP. BDP's extension into the broader UV solar-blind waveband fully supports the proposed optimization strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据