4.5 Article

Age-related changes in geometry and transparency of human crystalline lens revealed by optical signal discontinuity zones in swept-source OCT images

期刊

EYE AND VISION
卷 10, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s40662-023-00365-y

关键词

Crystalline lens; Ageing; Optical signal discontinuity zones; Optical coherence tomography

向作者/读者索取更多资源

The shape and transparency of the human crystalline lens change with age, affecting the optical properties and visual function. Using optical coherence tomography (OCT), this study characterized age-related differences in the morphology and transparency of the lens. It was found that the C3 zone showed the most significant changes, thickening more rapidly and becoming more opaque than other zones, and this was associated with a deterioration of optical quality and visual performance.
Background The shape and microstructure of the human crystalline lens alter with ageing, and this has an effect on the optical properties of the eye. The aim of this study was to characterise the age-related differences in the morphology and transparency of the eye lenses of healthy subjects through the optical signal discontinuity (OSD) zones in optical coherence tomography (OCT) images. We also investigated the association of those changes with the optical quality of the eye and visual function. Methods OCT images of the anterior segment of 49 eyes of subjects (9-78 years) were acquired, and the OSD zones (nucleus, C1-C4 cortical zones) were identified. Central thickness, curvature and optical density were measured. The eye's optical quality was evaluated by the objective scatter index (OSI). Contrast sensitivity and visual acuity tests were performed. The correlation between extracted parameters and age was assessed. Results The increase in lens thickness with age was dominated by the thickening of the cortical zone C3 (0.0146 mm/year). The curvature radii of the anterior lens surface and both anterior and posterior nucleo-cortical interfaces decreased with age (- 0.053 mm/year, - 0.013 mm/year and - 0.006 mm/year, respectively), and no change was observed for the posterior lens radius. OCT-based densitometry revealed significant correlations with age for all zones except for C1 beta, and the highest increase in density was in the C2-C4 zones (R = 0.45, 0.74, 0.56, respectively, P < 0.001). Increase in OSI was associated with the degradation of visual function. Conclusions OCT enables the identification of OSD zones of the crystalline lens. The most significant age-related changes occur in the C3 zone as it thickens with age at a faster rate and becomes more opaque than other OSD zones. The changes are associated with optical quality deterioration and reduction of visual performance. These findings contribute to a better understanding of the structure-function relationship of the ageing lens and offer insights into both pathological and aging alterations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据