4.3 Article

Gradient complexity and non-stationary views of differentially private empirical risk minimization

期刊

THEORETICAL COMPUTER SCIENCE
卷 982, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.tcs.2023.114259

关键词

Differential privacy; Empirical risk minimization; Convex optimization; Non-convex optimization; Supervised learning

向作者/读者索取更多资源

This paper studies the problem of Differentially Private Empirical Risk Minimization (DP-ERM) with both convex and non-convex loss functions. Several new methods are proposed for DP-ERM with smooth convex loss functions, achieving near-optimal expected excess risks while reducing gradient complexity. For DP-ERM with non-convex loss functions, both low and high dimensional spaces are explored, and utility measurements are introduced using different norms and error bounds. The paper reveals that certain non-convex loss functions can be reduced to a level similar to convex loss functions.
In this paper, we study the Differentially Private Empirical Risk Minimization (DP-ERM) problem, considering both convex and non-convex loss functions. For cases where DP-ERM involves smooth (strongly) convex loss functions with or without non-smooth regularization, we propose several novel methods. These methods achieve (near) optimal expected excess risks (i.e., utility bounds) while reducing the gradient complexity compared to existing approaches. When dealing with DP-ERM and smooth convex loss functions in high dimensions, we introduce an algorithm that achieves a superior upper bound with lower gradient complexity than previous solutions. In the second part of the paper, for DP-ERM with non-convex loss functions, we explore both low and high dimensional spaces. In the low dimensional case with a non-smooth regularizer, we extend an existing approach by measuring the utility using the l(2) norm of the projected gradient. Furthermore, we introduce a novel error bound measurement, transitioning from empirical risk to population risk by employing the expected l(2) norm of the gradient. For the high dimensional case, we demonstrate that by measuring utility with the Frank-Wolfe gap, we can bound the utility using the Gaussian Width of the constraint set, instead of the dimensionality (p) of the underlying space. We also show that the advantages of this approach can be achieved by measuring the l(2) norm of the projected gradient. Finally, we reveal that the utility of certain special non-convex loss functions can be reduced to a level (depending only on log p.) similar to that of convex loss functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据