4.5 Article

Detectability of carbon with ChemCam LIBS: Distinguishing sample from Mars atmospheric carbon, and application to Gale crater

期刊

ICARUS
卷 408, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2023.115840

关键词

Mars; Mineralogy; Carbonates; Atmosphere

向作者/读者索取更多资源

Analysis of data obtained by ChemCam on Mars reveals that the carbon signal is mainly related to ionization of the atmosphere, with variability potentially linked to the physical state of the atmosphere. Up to sol 3355, no carbonate was detected in the ChemCam dataset, suggesting that it is not a major constituent (>50%) in the analyzed targets and that carbon in soils is not enriched beyond the limit of detection. The dominant salts found in Gale are sulfate and chlorides, while the absence of carbonates, seen in Jezero, may be due to differences in protolith.
Onboard NASA's Curiosity rover, the ChemCam LIBS instrument has provided a wealth of information on the chemistry of rocks within Gale crater. Here, we use ChemCam in order to search for carbonates among the >3500 individual targets analyzed by this instrument. Because the carbon-lines are a combination of signal from the CO2-rich atmosphere and possible carbon from the targets, we developed a laboratory-based univariate calibration obtained under Mars-like atmosphere. We measured different type of carbon-bearing samples (sediments, coals, carbonates) and their mixture with a basaltic powder. Based on this work, the preferred approach to qualitatively assess carbon under a CO2-rich atmosphere is to use a ratio to an oxygen line (777 nm) and the estimated limit of detection for carbon in a single LIBS point are found to be of 4.5 wt% and 6.9 wt% for reduced and organic carbon, respectively. Considering carbonate, this LOD correspond to about 50 wt% carbonate in the analyzed volume.Analysis of data obtained on Mars by ChemCam up to sol 3350 reveals the presence of a correlation between the intensity of carbon and oxygen lines, as observed in the laboratory, confirming that most carbon signal is related to ionization of the atmosphere. Some variability in the carbon signal appears related to the physical state of the atmosphere (density, temperature).Based on a combined analysis of carbon lines and major element compositions (Ca, Fe, Mg), there was no detection of carbonate in the ChemCam dataset up to sol 3355. Therefore, we conclude that carbonate was not present as a major constituent (>50%) in the ChemCam LIBS targets, and that soils are not enriched in carbon beyond the limit of detection. The dominant salts present are sulfate, chlorides, and the lack of carbonates in Gale, while observed in Jezero, may at least partly be related to a difference in protolith.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据