4.7 Article

Algebraic multiscale grid coarsening using unsupervised machine learning for subsurface flow simulation

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 496, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2023.112570

关键词

Reservoir simulation; Unsupervised learning; Graph-based partitioning; Computational performance; Algebraic multiscale methods

向作者/读者索取更多资源

Subsurface flow simulation is crucial for various geoscience applications, and the algebraic multiscale (AMS) solvers have shown promise in improving simulation performance. This study proposes a novel approach using unsupervised learning methods to generate multiscale coarse grids, resulting in improved AMS performance compared to existing methods. The development has the potential to significantly enhance the efficiency of running detailed models in reservoir engineering.
Subsurface flow simulation is vital for many geoscience applications, including geoenergy extraction and gas (energy) storage. Reservoirs are often highly heterogeneous and naturally fractured. Therefore, scalable simulation strategies are crucial to enable efficient and reliable operational strategies. One of these scalable methods, which has also been recently deployed in commercial reservoir simulators, is algebraic multiscale (AMS) solvers. AMS, like all multilevel schemes, is found to be highly sensitive to the types (geometries and size) of coarse grids and local basis functions. Commercial simulators benefit from a graph-based partitioner; e.g., METIS to generate the multiscale coarse grids. METIS minimizes the amount of interfaces between coarse partitions, while keeping them of similar size which may not be the requirement to create a coarse grid. In this work, we employ a novel approach to generate the multiscale coarse grids, using unsupervised learning methods which is based on optimizing different parameter. We specifically use the Louvain algorithm and Multi-level Markov clustering. The Louvain algorithm optimizes modularity, a measure of the strength of network division while Markov clustering simulates random walks between the cells to find clusters. It is found that the AMS performance is improved when compared with the existing METIS-based partitioner on several field-scale test cases. This development has the potential to enable reservoir engineers to run ensembles of thousands of detailed models at a much faster rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据