4.6 Article

Inverse chi-square-based flamingo search optimization with machine learning-based security solution for Internet of Things edge devices

期刊

AIMS MATHEMATICS
卷 9, 期 1, 页码 22-37

出版社

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/math.20244002

关键词

deep learning; Internet of Things; edge devices; machine learning; feature selection; security

向作者/读者索取更多资源

Internet of Things (IoT) edge devices are facing security challenges and the need for data protection. This study proposes a security solution using an inverse chi square-based flamingo search optimization algorithm with machine learning to address these issues.
Internet of Things (IoT) edge devices are becoming extremely popular because of their ability to process data locally, conserve bandwidth, and reduce latency. However, with the developing count of IoT devices, threat detection, and security are becoming major concerns. IoT edge devices must avoid cyber threats and protect user data. These devices frequently take limited resources and can run on lightweight operating systems, which makes them vulnerable to security attacks. Intrusion detection systems (IDS) can be run on edge devices to recognize suspicious actions and possible risks. These systems monitor traffic patterns, and behavior, and identify attack signatures to detect and report on possible attacks. This study presents a design for an inverse chi square-based flamingo search optimization algorithm with machine learning (ICSFSO-ML) as a security solution for Internet of Things edge devices. The goal of the ICSFSO-ML technique is to apply ML and metaheuristics for threat recognition in IoT edge devices. To reduce the high dimensionality problem, the ICSFSO-ML technique uses the ICSFSO algorithm for feature selection purposes. Further, the ICSFSO-ML technique exploits the stacked bidirectional long short-term memory (SBiLSTM) model for the threat detection process. To enhance the efficacy of the SBiLSTM model, an arithmetic optimization algorithm (AOA) is applied for the hyperparameter selection process. The simulation performance of the ICSFSO-ML technique can be tested on a benchmark threat database. The performance analysis showed the benefits of the ICSFSO-ML methodology compared to existing methodologies with a

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据