4.6 Article

Decellularized tracheal scaffold as a promising 3D scaffold for tissue engineering applications

期刊

TISSUE & CELL
卷 85, 期 -, 页码 -

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.tice.2023.102258

关键词

Tissue engineering; Scaffold; Trachea; Adipose-derived stem cells; Extracellular matrix (ECM)

向作者/读者索取更多资源

Tissue engineering research has focused on the characteristics and biocompatibility of decellularized sheep tracheal scaffolds, as well as the differentiation of Adipose-derived stem cells (AD-MSCs) into tracheal cells. The prepared scaffolds show potential for engineering applications and provide a suitable environment for stem cell differentiation. This research serves as a foundation for future studies on tracheal decellularization scaffolds and paves the way for their use in organ regeneration and clinical medicine.
Tissue engineering is a science that uses the combination of scaffolds, cells, and active biomolecules to make tissue in order to restore or maintain its function and improve the damaged tissue or even an organ in the laboratory. The purpose of this research was to study the characteristics and biocompatibility of decellularized sheep tracheal scaffolds and also to investigate the differentiation of Adipose-derived stem cells (AD-MSCs) into tracheal cells. After the decellularization of sheep tracheas through the detergent-enzyme method, histological evaluations, measurement of biochemical factors, measurement of DNA amount, and photographing the ultra-structure of the samples by scanning electron microscopy (SEM), they were also evaluated mechanically. Further, In order to check the viability and adhesion of stem cells to the decellularized scaffolds, adipose mesenchymal stem cells were cultured on the scaffolds, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-mide (MTT) assay was performed. The expression analysis of the intended genes for the differentiation of mesenchymal stem cells into tracheal cells was evaluated by the real-time PCR method. These results show that the prepared scaffolds are an ideal model for engineering applications, have high biocompatibility, and that the tracheal scaffold provides a suitable environment for the differentiation of ADMSCs. This review provides a basis for future research on tracheal decellularization scaffolds, serves as a suitable model for organ regeneration, and paves the way for their use in clinical medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据