4.7 Article

Remote Estimation of Vegetation Fraction and Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data

期刊

REMOTE SENSING
卷 8, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/rs8050416

关键词

vegetation fraction; flower fraction; canopy reflectance; unmanned aerial vehicle; oilseed rape

资金

  1. National 863 Project of China [2013AA102401]
  2. State Natural Science Support of Hubei [2015BCE045]
  3. National Defense project [30-Y20A29-9003-15/17]
  4. National Natural Science Foundation of China [41401390]
  5. School of Remote Sensing and Information Engineering, Wuhan University, China

向作者/读者索取更多资源

This study developed an approach for remote estimation of Vegetation Fraction (VF) and Flower Fraction (FF) in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. The results showed that the Visible Atmospherically Resistant Index (VARI(green)) worked most accurately for estimating VF in flower-free samples with an Root Mean Square Error (RMSE) of 3.56%, while the Enhanced Vegetation Index (EVI2) was the best in flower-containing samples with an RMSE of 5.65%. Based on reflectance in green and NIR bands, a technique was developed to identify whether a sample contained flowers and then to choose automatically the appropriate algorithm for its VF estimation. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate FF in oilseed rape. No significant correlation was observed between VI and FF when soil was visible in the sensor's field of view. Reflectance at 550 nm worked well for FF estimation with coefficient of determination (R-2) above 0.6. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with RMSE below 6%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据