4.7 Article

Global retrieval of the spectrum of terrestrial chlorophyll fluorescence: First results with TROPOMI

期刊

REMOTE SENSING OF ENVIRONMENT
卷 300, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2023.113903

关键词

Solar-induced chlorophyll fluorescence (SIF); TROPOMI; SIF spectrum; Data-driven approach; Solar Fraunhofer lines

向作者/读者索取更多资源

This study presents a data-driven approach to reconstruct the terrestrial SIF spectrum using measurements from the TROPOMI instrument on Sentinel-5 precursor mission. The reconstructed SIF spectrum shows improved spatiotemporal distributions and demonstrates consistency with other datasets, indicating its potential for better understanding of the ecosystem function.
Solar-Induced chlorophyll Fluorescence (SIF) could be used as an indicator of photosynthetic status due to the close relationship between SIF and the photosynthetic apparatus. Terrestrial SIF is emitted throughout the red and near-infrared spectrum and is characterized by two peaks centered around 685 nm and 740 nm, respectively. In this study, we present a data-driven approach to reconstruct the terrestrial SIF spectrum from measurements by TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 precursor mission. This approach makes use of solar Fraunhofer lines in the combined spectral windows devoid of strong atmospheric absorption features to retrieve SIF signal from the solar radiation reflected by the surface and atmosphere system. Information contents are mainly from the two windows close to the red and far-red SIF peaks, 663-686 nm and 743-758 nm. A linear forward model represented as an addition of the SIF-free radiance spectrum and the SIF component is proposed with a proper selection of its parameter settings. The SIF component was simulated as linear combinations of 2 basis SIF spectra. Through inverting the linear forward model, the SIF spectrum was retrieved from the solar radiation reflected by the surface and atmosphere system. The evaluation of the retrieval results is performed by inter-comparison with other SIF datasets. The comparisons display similar spatial distributions for the weekly global SIF composites for the first two weeks in June and December of 2019 and July and December of 2021. Especially the comparison of the far-red SIF datasets with other dedicated far-red SIF retrievals demonstrates close agreement, indicating consistency among the retrieval approaches. The reconstructed TROPOMI red SIF shows improved and more reasonable spatiotemporal distributions. The retrieval uncertainty for the weekly global composite is about 12% and 2% of the peak red and far-red SIF values, respectively, which can be considered as satisfactory error thresholds for global composites of SIF observations. Different spectral features for several typical biomes from reconstructed SIF spectra suggest that red and far-red SIF may carry complementary information on photosynthetic function and biophysical properties of the plant. For the first time, the reconstruction of the SIF spectrum is achieved for spaceborne measurements with the potential to open new applications for better understanding of the ecosystem function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据